

3° CONGRESO INTERNACIONAL PROTECCIÓN CONTRA INCENDIO

Simulación Computacional de Evacuación de Personas en caso de Incendio

Sebastián Lagos Rivera — Ingeniero Físico USACH Jefe Sección Estudios y Asesorías Unidad Ingeniería de Protección contra el Fuego (IPF) DICTUC

TABLA DE CONTENIDOS

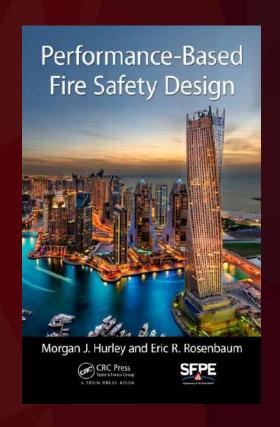
- 1. INTRODUCCIÓN
- 2. DISEÑO BASADO EN DESEMPEÑO
- 3. CONCEPTOS DE EVACUACIÓN
- 4. SIMULACIÓN DE EVACUACIÓN
- 5. DINÁMICA DE INCENDIOS
- 6. SIMULACIÓN DE INCENDIOS
- 7. CASO APLICADO: ANÁLISIS RSET vs. ASET

INTRODUCCIÓN

DEFINICIONES:

- ✓ MODELO: representación fenomenológica idealizada del comportamiento de un sistema.
- ✓ SIMULACIÓN: generación de una historia artificial de un sistema, en base a un modelo físico, con el fin de extraer inferencias concernientes a las características de operación del sistema real representado.

INTRODUCCIÓN



3, i

TABLA DE CONTENIDOS

- 1. INTRODUCCIÓN
- 2. DISEÑO BASADO EN DESEMPEÑO
- 3. CONCEPTOS DE EVACUACIÓN
- 4. SIMULACIÓN DE EVACUACIÓN
- 5. DINÁMICA DE INCENDIOS
- 6. SIMULACIÓN DE INCENDIOS
- 7. CASO APLICADO: ANÁLISIS RSET vs. ASET

DISEÑO BASADO EN DESEMPEÑO Performance-Based Design (PBD)

Qué es?:

Aproximación ingenieril en el diseño de la protección contra incendio. Una de sus herramientas son las simulaciones computacionales.

Cómo puede ser utilizado?

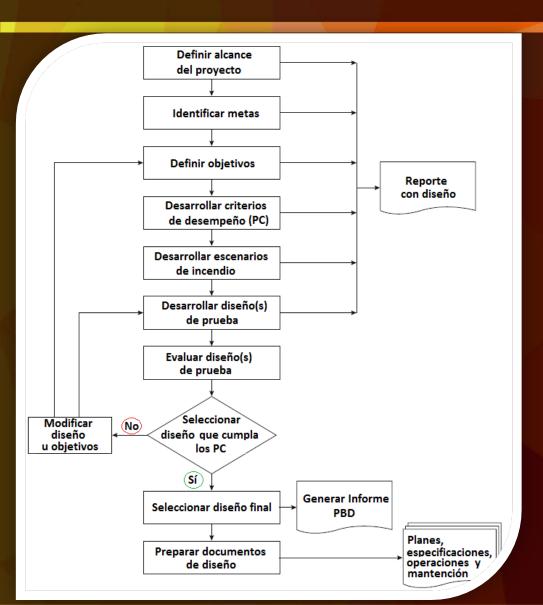
- 1) En conjunto con el diseño prescriptivo (enfoques concomitantes).
- 2) En base a un código PBD.
- 3) Metodología aislada. Cuando un mandante requiere objetivos por sobre los mínimos requeridos en un código prescriptivo.

DISEÑO BASADO EN DESEMPEÑO Breve Historia

- 1985: Publicación de regulaciones para el PBD (Gran Bretaña).
- 1988: Publicación de la 1º edición del SFPE Handbook of Fire Protection Engineering (USA).
- 1992: NZ publica código de construcción y guía de diseño ingenieril PBD.
- 1995: Australia publica el código de construcción y guía de diseño PBD.
- 2000: NFPA 101 incorpora PBD en NFPA 101 Life Safety Code.
- 2000: Publicación del documento SFPE Engineering Guide to PB Fire Protection Analysis.
- 2000: SFPE Code Official's Guide (PBD Design Review).
- 2000: Japón publica "PB Building Standard Law".
- 2003: Se incluye el PBD en NFPA 5000 "Building Construction and Safety Code".

DISEÑO BASADO EN DESEMPEÑO

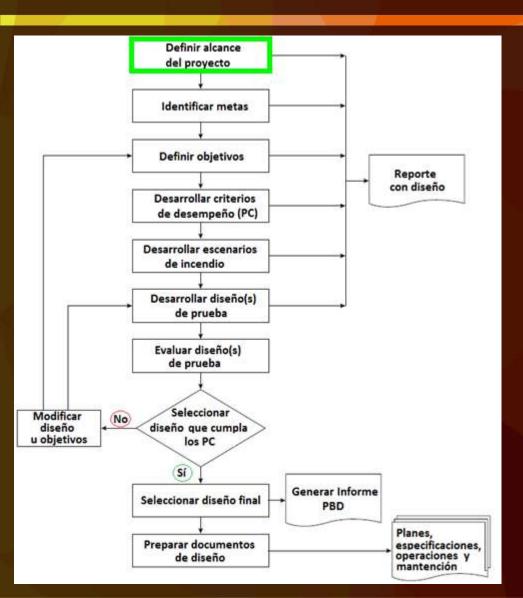
Ventajas:


- ✓ Promueve un mejor entendimiento de cómo será el desempeño de un edificio en caso de incendio. Qué es un edificio "seguro"?
- ✓ Considera escenarios de baja frecuencia. Distintos escenarios de incendio.
- Permite al ingeniero o diseñador abordar características/funcionalidades únicas de un edificio y también distintos usos/destinos.

<u>Desventajas:</u>

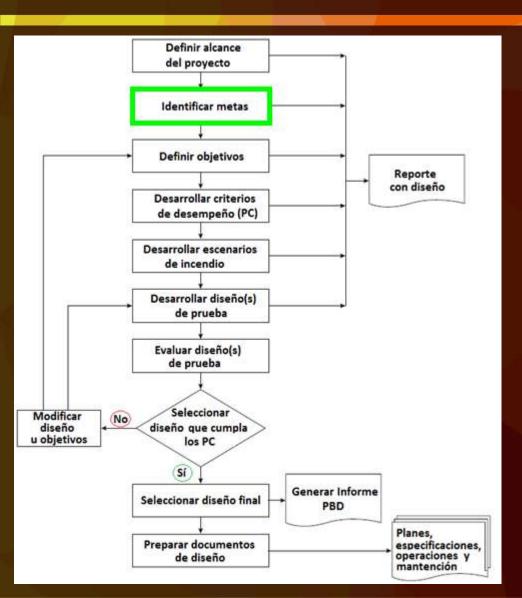
- Requiere mayor experiencia y conocimientos para aplicarse, en comparación al diseño prescriptivo.
- Requiere + tiempo en su desarrollo y revisión (peer review).
- Mayor dependencia en el rol del ingeniero (uso de software).

DISEÑO BASADO EN DESEMPEÑO Estructura – Diagrama de Flujo



- Estructura presente en Guía SFPE PBD.
- Proceso definido que permite flexibilidad.
- Adaptabilidad a cada proyecto.
- No establece metodologías específicas ni tampoco modelos de cálculo.

DISEÑO BASADO EN DESEMPEÑO Alcance del Proyecto



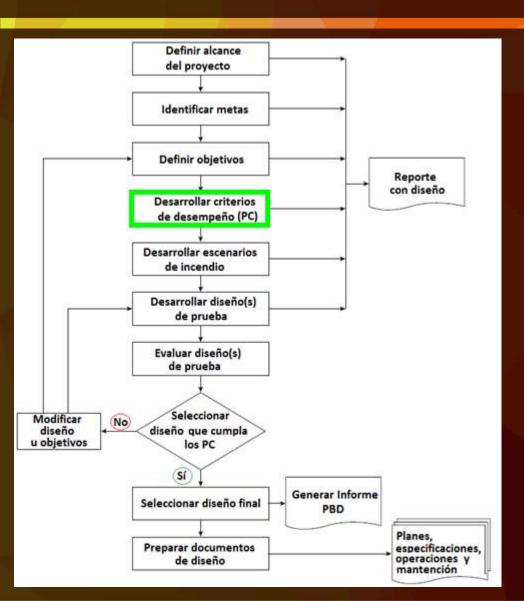
- Similar al alcance o campo de aplicación de los códigos prescriptivos.
- Sectores del edificio o instalación que serán considerados en el diseño.
- Características del edificio.
- Regulaciones aplicables en el diseño.

DISEÑO BASADO EN DESEMPEÑO Metas

- Def. "Resultado global deseado de seguridad contra incendios en términos cualitativos".
- Deben ser fáciles de entender.
- Ej. OGUC Capítulo 3, Título IV:
 - Que se facilite el salvamento de los ocupantes de los edificios en caso de incendio.
 - Que se reduzca al mínimo, en cada edificio, el riesgo de incendio.
 - Que se evite la propagación del fuego, tanto al resto del edificio como desde un edificio a otro.
 - Que se facilite la extinción de los incendios.
- Otros: protección de la propiedad, continuidad de operación y protección del medio ambiente.

DISEÑO BASADO EN DESEMPEÑO Objetivos

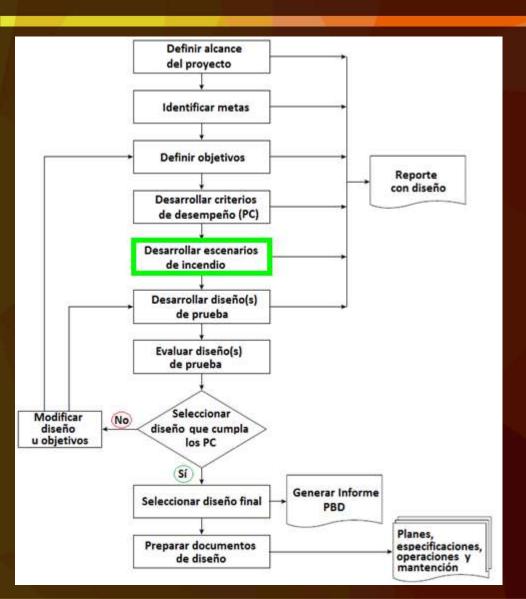
1. Objetivos del mandante:


- Daños a la propiedad y a equipamiento crítico
- Bases técnicas.
- Especificaciones adicionales.

2. Objetivos de Diseño:

- Especificados por NFPA 101:
- Protección de los ocupantes
- Integridad estructural
- Efectividad de sistemas de protección y mantención de éstos mismos.

DISEÑO BASADO EN DESEMPEÑO Criterios de Desempeño (Performance Criteria)

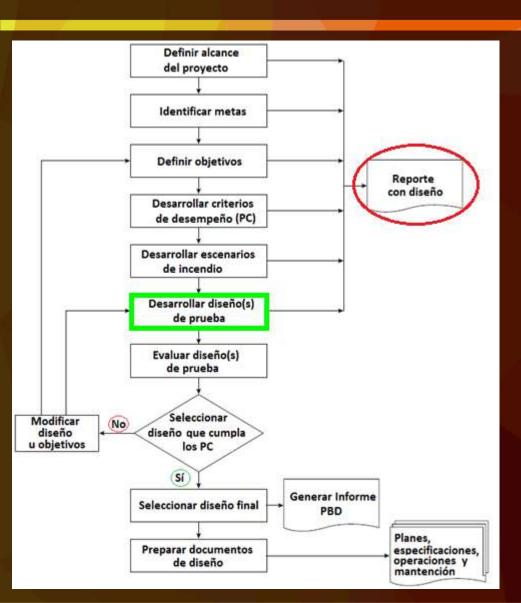


Definir valores límite o de umbral, que si son excedidos, indican que ha ocurrido un daño inaceptable.

- Ejemplos:
- Concentración de humo, visibilidad.
- Fractional Effective Dose (FED < 0,8); [CO] y [HCN]
- Flujo de calor radiante.
- Temperaturas capa de humo < 200°C
- Altura de la capa de humo no debe descender por debajo de 1,83 m (6 ft).

DISEÑO BASADO EN DESEMPEÑO Escenarios de Incendio

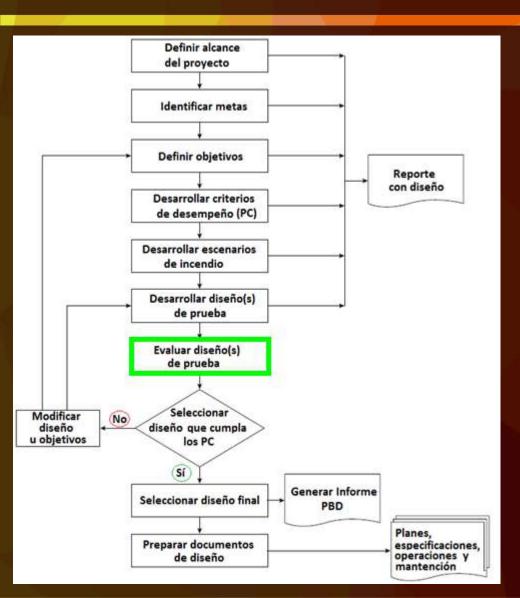
Aspectos a considerar:


- A. Arquitectura del edificio
- B. Ocupantes
- C. Incendio; que elemento entra en ignición, crecimiento del incendio, flashover, decaimiento y extinción.

Se debe acotar a **escenarios de diseño** (los más probables, los más severos)

NFPA 101: establece 8 escenarios de incendio

DISEÑO BASADO EN DESEMPEÑO Diseño de Prueba (Trial Design)


Desarrollar estrategia(s) de seguridad contra incendio que satisfaga(n) las metas/objetivos del proyecto.

Todos los pasos anteriores constituyen la fase cualitativa del diseño.

IMPORTANTE: En esta etapa se debe generar un reporte y que todas las partes involucradas estén de acuerdo con este documento.

DISEÑO BASADO EN DESEMPEÑO Evaluar Diseño de Prueba

NIVELES DE EVALUACIÓN:

- 1. **Subsistema**: análisis comparativo (vs. Código o Norma) de un componente (evacuación, detección, extinción, resistencia al fuego, etc.)
- 2. **Sistema**: comparación frente a los requerimientos prescriptivos o criterios de desempeño específicos. Considera la interacción entre subsistemas.
- 3. Edificio Completo: se consideran todos los subsistemas utilizados en la estrategia de protección y sus formas de interactuar.

EN ESTE CONTEXTO APARECEN LAS HERRAMIENTAS DE SIMULAÇION DE INCENDIOS Y EVACUACION!

LO ANTERIOR PARA SELECCIONAR EL DISEÑO QUE SATISFAGA TODOS LOS CRITERIOS DE DESEMPEÑO, EN CADA UNO DE LOS ESCENARIOS DE INCENDIO SELECCIONADOS.

TABLA DE CONTENIDOS

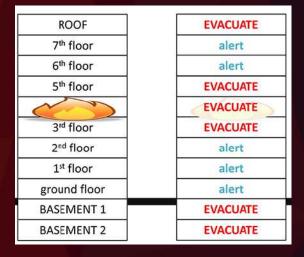
- 1. INTRODUCCIÓN
- 2. DISEÑO BASADO EN DESEMPEÑO
- 3. CONCEPTOS DE EVACUACIÓN
- 4. SIMULACIÓN DE EVACUACIÓN
- 5. DINÁMICA DE INCENDIOS
- 6. SIMULACIÓN DE INCENDIOS
- 7. CASO APLICADO: ANÁLISIS RSET vs. ASET

EVACUACIÓN SIMULTÁNEA COMPLETA (Simultaneous Full Evac.)

- Es la más común.
- Edificios de gran altura y complejidad.
- Estaciones de metro, malls. Gran afluencia de público.
- Evacuación de un gran número de ocupantes.
- Sistema de alerta por voz en caso de incendio.
- Brigadas de emergencia entrenadas, simulacros. Toma de conciencia.
- Mantener a los ocupantes atentos y en conocimiento de la emergencia.
- Ayudar en la toma de decisiones.
- Se utilizan herramientas de simulación computacional para calcular tiempos de evacuación.

PROTECCIÓN EN REFUGIO (Shelter in Place)

- Utilizada en caso que existan ocupantes con movilidad reducida.
- Permanecer en el compartimento inicial.
- Para evitar propagación de humo e incendio:
- Edificios o estructuras altamente compartimentadas (V + H). Ej. Muros > F-120.
- Protección pasiva + Protección activa + Procedimientos de emergencia.
 Redundancia.
- Considerar que las fatalidades pueden ocurrir durante la evac.
- Hospitales (UPC), centros de detención, cárceles.
- Otros casos: atentados o acciones terroristas. No salir del edificio a veces es mejor.


3

- Reubicar a los ocupantes:
- Desde un área con potencial riesgo > sector seguro del edificio.
- Rutas de escape horizontales.
- Detección + sistemas de alerta por voz.
- Puede ser usada en edificios de gran altura. Ej. Reubicar/evacuar ocupantes de pisos inferiores al incendio.

ESTRATEGIA DE EVACUACIÓN PARCIAL (Phased Evac.)

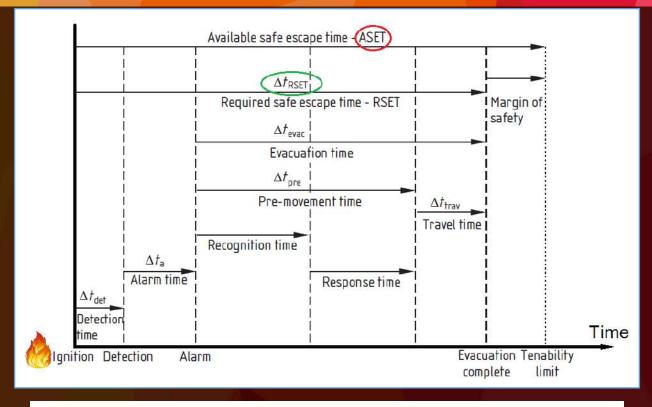
- Combinación de:
- Reubicación [en peligro] + Protección en Refugio [+alejados]
- Optimizar el uso de vías de evacuación (descongestionar escaleras y evitar atochamientos).
- OK para incendios controlados por sistemas de rociadores en edificios altos.
- Utilizada también en hospitales.
- Evacuación por pisos.
- Compartimentación vertical de gran importancia.

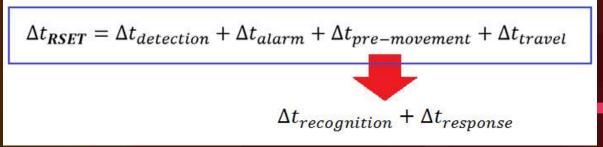
CONCEPTOS DE EVACUACIÓN

COMPORTAMIENTO HUMANO: "Estudio de la respuesta humana frente a un incendio o alguna emergencia similar, incluyendo las creencias, actitudes, motivaciones, decisiones y estrategias de afrontamiento"

- **Objetivo:** minimizar el riesgo al que se ven afectados las personas durante un incendio y contribuir al diseño seguro contra incendios, confeccionando procedimientos de emergencia más efectivos.
- Cómo se logra?: generando y recopilando datos cualitativos y cuantitativos de la respuesta humana.
- Para qué sirve?: inputs para modelos computacionales.

CONCEPTOS DE EVACUACIÓN


La respuesta de los ocupantes está condicionada por:


- Número de ocupantes
- Percepción del riesgo
- Noche/día
- Distribución dentro del edificio/recinto (variable)
- Nivel de familiaridad con el edificio
- Capacidades / Discapacidades
- Layout Vías de evacuación
- Sistema de alarma
- Sistema de notificación

y un largo etcétera...

CONCEPTOS DE EVACUACIÓN Línea de tiempo

CONCEPTOS DE EVACUACIÓN Intervalos de tiempo involucrados

- $\Delta t_{detection}$: desde la ignición hasta la detección del incendio por un sistema automático o el momento en que el primer ocupante detecta una señal del incendio.
- Δt_{alarm} : desde la detección hasta que se activa la primera alarma.

PROCESO DE TOMA DE DECISIÓN:

- $\Delta t_{recognition}$: desde que la señal de alarma es evidente hasta antes de que los ocupantes comiencen a desplazarse. Este intervalo de tiempo termina cuando los ocupantes aceptan que existe una necesidad de moverse.
- $\Delta t_{response}$: desde que se reconoce la señal de alarma hasta que los ocupantes comienzan a responder.

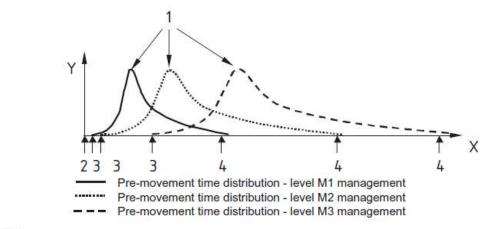
CONCEPTOS DE EVACUACIÓN Tiempo de respuesta $(\Delta t_{response})$

Actividades que pueden llevarse a cabo:

- Buscar o reunir familiares/amigos.
- Asegurarse de que la alarma sea real, de donde proviene?
- Tratar de extinguir el incendio
- Moverse hacia un lugar equivocado, dudar
- Buscar una ruta correcta
- Alertar a los demás ocupantes

CONCEPTOS DE EVACUACIÓN Tiempo de pre-movimiento

Distribución log-normal (Personas/s vs. Tiempo)


NIVEL DE MANEJO:

- Estrategia para afrontar un incendio.
- Brigadas de emergencia, simulacros.
- Plan de emergencia.
- Vías de evac. claramente identificadas.

M1: ALTO

M2: INTERMEDIO

M3: BAJO

Key

- X Time

NOTE Pre-movement of first occupants to move and subsequent pre-movement time distribution is lengthened by progressively lower levels of fire safety management.

Figure C.1 — Representation of pre-movement time distributions and effects of different levels of fire safety management

CONCEPTOS DE EVACUACIÓN Efecto de la Señal de Alarma

NIVEL DE ALARMA:

A1: sistema automático de detección en todo el edificio, activándose una alarma general

A2: pre-alarma de seguridad + alarma general en caso de no desactivar la pre-alarma.

A3: sistema de alarma sólo locales o sin sistema de alarma.

COMPLEJIDAD DEL EDIFICIO:

B1: supermarket, restaurant, tienda, etc.

B2: edificios de baja altura, layout sencillo. Cine, teatro.

B3: edificios de gran altura/complejidad.

CONCEPTOS DE EVACUACIÓN Tabla con tiempos de pre-movimiento

BRITISH STANDARD

BS 7974:2001

Application of fire safety engineering principles to the design of buildings — Code of practice

PUBLISHED DOCUMENT

The	application of fire
	ty engineering
2.77	ciples to fire safety
desi	gn of buildings —

Part 6: Human factors: Life safety strategies — Occupant evacuation, behaviour and condition (Sub-system 6)

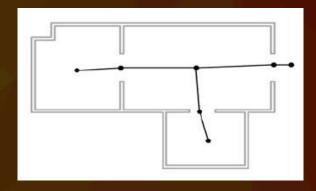
Scenario category and modifier	First occupants	Occupant distribution
	$\Delta t_{ m pre (lut percentile)}$	$\Delta t_{ m pre~(99th~percentile)}^{ m a}$
A: awake and familiar		
M1 B1 - B2 A1 - A2	0.5	1.0
M2 B1 - B2 A1 - A2	1	2
M3 B1 - B2 A1 - A3	>15	>15
For B3, add 0.5 for wayfinding	200	88773
M1 would normally require voice alarm/PA if unfamiliar visitors		
likely to be present		
B: awake and unfamiliar		3
M1 B1 A1 – A2	0.5	2
M2 B1 A1 – A2	10	3
M3 B1 A1 – A3	>15	>15
For B2 add 0.5 for wayfinding	- 10	
For B3 add 1.0 for wayfinding		
M1 would normally require voice alarm/PA		
Ci: sleeping and familiar		
(e.g. dwellings – individual occupancy)		
M2 B1 A1	5	5
M3 B1 A3	10	>20
For other units in a block assume one hour	10	-20
For other wifes in a block assume one flour		
Cii: managed occupancy		
(e.g. serviced apartments, hall of residence)		
(e.g. serviced apartments, nail of residence) M1 B2 A1 – A2	10	20
M1 B2 A1 – A2 M2 B2 A1 – A2	0.5.5	1772
	15	25
M3 B2 A1 – A3	>20	>20
Ciji sleeping and unfamiliar		
(e.g. hotel, boarding house)		
M1 B2 A1 – A2	15	15
M2 B2 A1 – A2	20	20
M3 B2 A1 – A3	>20	>20
For B3, add 1.0 for wayfinding	- 20	- 50
M1 would normally require voice alarm/PA		
D: medical care		
Awake and unfamiliar (e.g. day centre, clinic, surgery, dentist)		
M1 B1 A1 – A2	0.5	9
M2 B1 A1 – A2	1.0	3
M3 B1 A1 – A3	>15	>15
For B2 add 0.5 for wayfinding	-10	~10
For B3 add 1.0 for wayfinding		
M1 would normally require voice alarm/PA		
Sleeping and unfamiliar (e.g. hospital ward, nursing home.		
old peoples' home)		
M1 B2 A1 – A2	53	10 ^b
M2 B2 A1 – A2	10 ^b	20b
M2 B2 A1 – A2 M3 B2 A1 – A3	.55	95592
	>100	>200
For B3 add 1.0 for wayfinding		
M1 would normally require voice alarm/PA		2
E: transportation (e.g. railway, bus station or airport)		
Awake and unfamiliar	12	20
M1 B3 A1 – A2	1.5	4
M2 B3 A1 – A2	2.0	5
M3 B3 A1 – A3	>15	>15
M1 and M2 would normally require voice alarm/PA		

Tiempo total de premovimiento = $\Delta t_{1^{\circ} percentil} + \Delta t_{99^{\circ} percentil}$

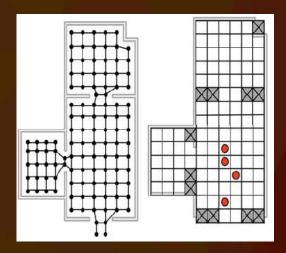
TABLA DE CONTENIDOS

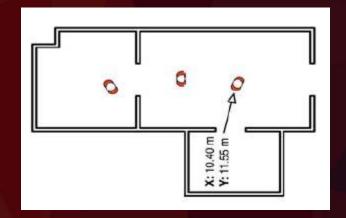
- 1. INTRODUCCIÓN
- 2. DISEÑO BASADO EN DESEMPEÑO
- 3. CONCEPTOS DE EVACUACIÓN
- 4. SIMULACIÓN DE EVACUACIÓN
- 5. DINÁMICA DE INCENDIOS
- 6. SIMULACIÓN DE INCENDIOS
- 7. CASO APLICADO: ANÁLISIS RSET vs. ASET

SIMULACIÓN DE EVACUACIÓN Tipos de Modelos


Niveles de sofisticación:

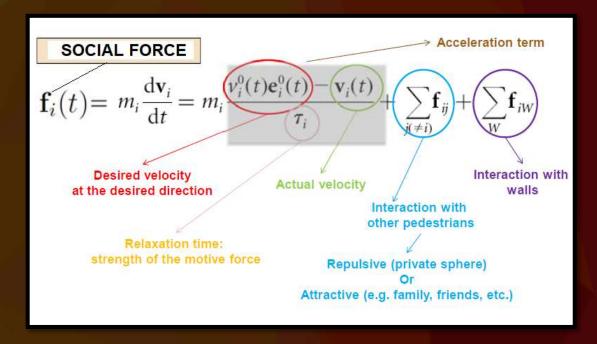
- 1. Modelos de movimiento: no consideran el componente de comportamiento. Demuestran áreas de congestión (cuellos de botella).
- 2. Modelos de comportamiento parcial: consideran el comportamiento en cierto grado, distribuciones de tiempo de pre-evacuación.
- Modelos de comportamiento completo: movimiento + consideran el impacto del incendio en los ocupantes y su evacuación.


SIMULACIÓN EVACUACIÓN Representación Espacial


A. Coarse Network Model:

B. Fine Network Model:

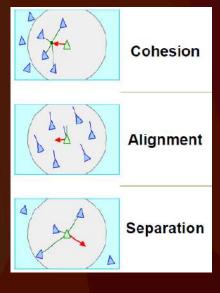
C. Continuous model:



SIMULACIÓN EVACUACIÓN Modelos de Movimiento

Social Force Model:

- Utilizado en FDS + Evac (continuo).
- Cambios temporales sistemáticos en la velocidad que toma una persona, descrita por el vector:
 Social Force.
- Esta fuerza representa el efecto del ambiente en una persona (otras personas y obstrucciones).


SIMULACIÓN EVACUACIÓN Modelos de Movimiento

Steering Model:

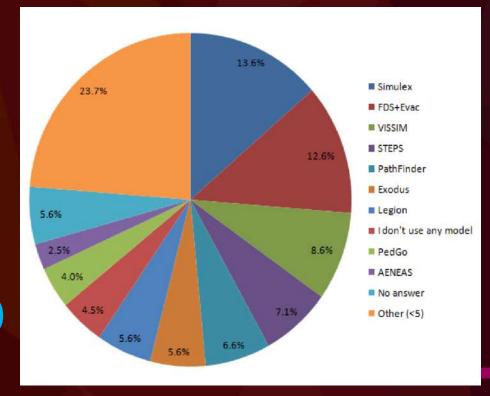
- Utilizado en Pathfinder (continuo).
- Las personas proceden independientemente hacia su objetivo, evitando chocar con otros ocupantes y obstrucciones (muros).

Atracción entre personas.

Ajuste de velocidad de cada persona para coincidir con la velocidad de la bandada.

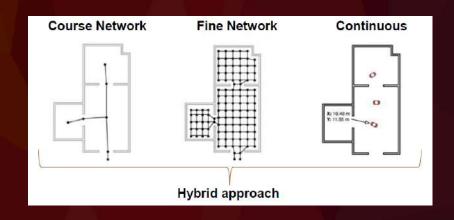
Evitar colisiones entre si.

SIMULACIÓN EVACUACIÓN Software


Existen más de 60 programas ! Encuesta: 198 participantes, 36 países, disponible en 6 idiomas:

Ronchi E & Kinsey M (2011). Evacuation models of the future. Insights from an online survey on user's experiences and needs. In Capote J (ed) et al: Advanced Research Workshop Evacuation and Human Behaviour in Emergency Situations EVAC11, Santander, pp. 145-155.

- LOS MÁS USADOS


- LO MÁS IMPORTANTE
PARA LOS USUARIOS: V&V (94 %)

SIMULACIÓN EVACUACIÓN Software

Cuál escoger ?
Variables importantes:

- 1. Modelo de movimiento espacial.
- 2. Cómo escogen las salidas los ocupantes? (distancia más corta, tiempo óptimo de espera, definido por el usuario).
- 3. Impacto del humo en el comportamiento humano (velocidad al caminar, escoger salida, FED, importar resultados FDS).
- 4. Ha sido probado/validado para escenarios específicos?

SIMULACIÓN EVACUACIÓN Review / FDS+Evac

FDS+Evac

FDS+Evac

Version 2.5.2 in FDS6

Grid/structure

Continuous model based on social force model

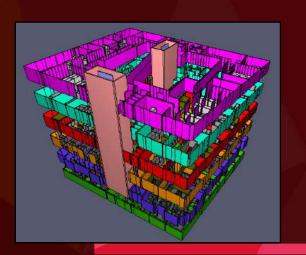
Exit choice

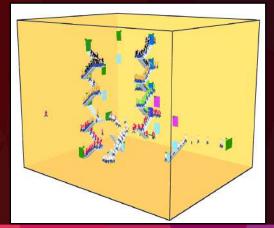
Optimal, conditional, user defined

V&V

IMO tests + case studies on buildings, stations, tunnels, etc.

Fire-human interaction


Smoke affects exit choice and speed. Fractional and absolute speed reduction based on both F&N, Jin and custom. FED can be calculated.


Advantages

- Transparency (Open source)
- Support from the community
- Complex scenarios can be modelled
- Advanced sub-models
- Group interactions (leadersfollowers)
- Direct interaction with fire (FDS)
- -Significant quantity of research studies available for reference
- Free

Limitations

- Model input set up is time consuming (no free GUI)
- Not easy to use for complex scenarios
- Computationally expensive
- Only partial documentation for the newest version embedded in FDS6

SIMULACIÓN EVACUACIÓN Review / Exodus

buildingEXODUS

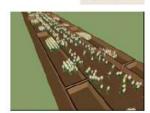
Version 6.3

Grid/structure

Fine Network and hybrid

Exit choice

Optimal, conditional, shortest, user defined


V&V

IMO tests + case studies on buildings, ships, aircrafts, stations, etc.

Fire-human interaction

Smoke affects exit choice and speed. Fractional reduction based on Jin in v5.0, a curve with both Jin and F&N in later versions. FED can be calculated.

https://fseg.gre.ac.uk

Advantages

- Fast computational time (with fine network approach)
- Complex scenarios can be modelled
- Advanced sub-models
- Direct interaction with a fire model (Smartfire)
- Constant development
- Significant quantity of research studies available for reference
- Ongoing work to link results to VR

Limitations

- Closed source
- Limitation of CA models
- No user support (only developer support)

✓ Se acopla con software CFD:

SMARTFIRE desarrollado por FSEG de la Universidad de Greenwich (UK)

SIMULACIÓN EVACUACIÓN Review / Pathfinder

Pathfinder

Version 2018.1

Grid/structure

Continuous based on Steering behaviours

Exit choice

Optimal, shortest, user defined

V&V

IMO tests, case studies (including buildings, tunnels, etc.), NIST Tech Note 1822

Fire-human interaction

No direct impact of smoke on speed, visual representation of slices (e.g. visibility, temperature, etc.) from FDS, FED calculation (no HCN).

Advantages

- Fast model input set up
- Integration with CAD/Revit models
- It easily permits to simulate complex buildings
- One of the most used models (user and developer support)
- Large amount of agents can be simulated
- Constant development
- Assisted evacuation simulation

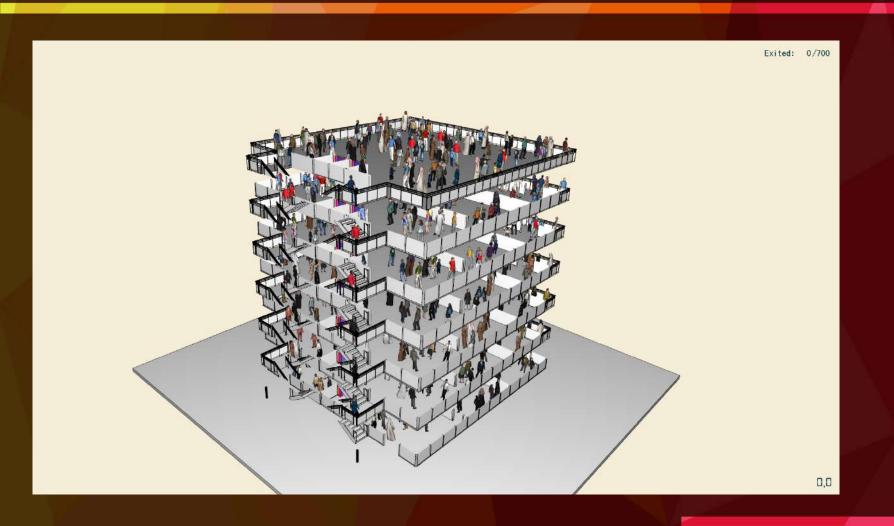
Limitations

- No access to the source code (commercial software)
- no direct impact of smoke on agents speed
- No advance sub-model for exit choice in smoke

✓ Se acopla con software CFD:

PyroSim FDS desarrollado por NIST

SIMULACIÓN EVACUACIÓN Tiempo que toma evacuar



✓ A partir de la simulación computacional de evacuación se obtiene:

RSET = Required Safe Egress Time

SIMULACIÓN EVACUACIÓN Ejemplo Pathfinder

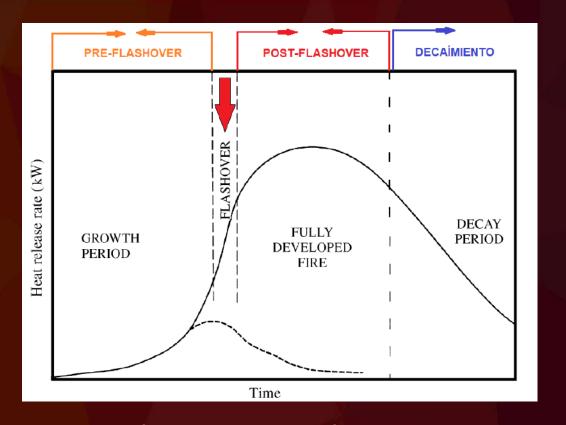
TABLA DE CONTENIDOS

- 1. INTRODUCCIÓN
- 2. DISEÑO BASADO EN DESEMPEÑO
- 3. CONCEPTOS DE EVACUACIÓN
- 4. SIMULACIÓN DE EVACUACIÓN
- 5. DINÁMICA DE INCENDIOS
- 6. SIMULACIÓN DE INCENDIOS
- 7. ANÁLISIS RSET vs. ASET
- 8. CASOS APLICADOS

DINÁMICA DE INCENDIOS Tasa de Liberación de Calor (HRR)

✓ Es el más importante descriptor de la intensidad/potencia de un incendio.

Def. Cantidad de energía liberada [MJ] en un determinado tiempo [s]


$$Q_{avg} = E/t$$
 [MW]

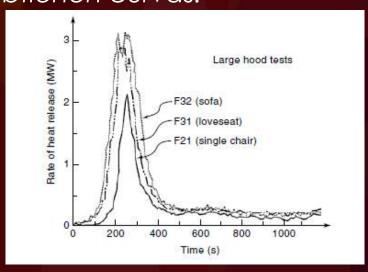
DINÁMICA DE INCENDIOS Incendios en Compartimentos

ETAPAS:

- 1. Pre-Flashover (análisis RSET)
- 2. Post-Flashover (RF)
- 3. Decaímiento $(T\sim20\%T_{peak})$

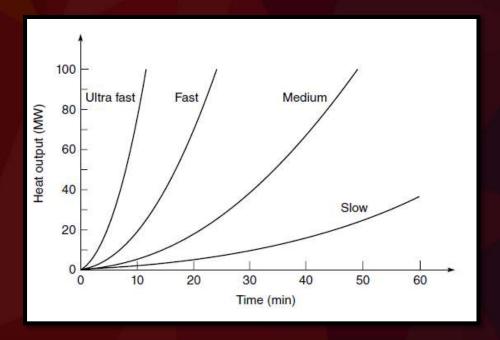
FLASHOVER: período de transición que involucra una rápida propagación del incendio a todas las superficies combustibles dentro del compartimento.

DINÁMICA DE INCENDIOS Tasa de Liberación de Calor (HRR)


✓ A través de experimentos a escala real se obtienen curvas:

BASES DE DATOS: Universidad de Maryland

Item	Maximum rate of heat release (kW)	Source
Chair, wooden frame, HR foam, cotton fabric	650	Sundström (1995)
Chair, wooden frame, CMHR foam, cotton fabric	700	Sundström (1995)
Latex foam pillow, 50/50 cotton/polyester fabric	117	Babrauskas (1984/85)
Wardrobe, 68 kg, 12.7 mm thick plywood	3500	Lawson et al. (1983)
Curtain (closed), 117 g/m ² cotton/polyester	267	Moore (1978)
Curtain (open), 117 g/m ² cotton/polyester	303	Moore (1978)
Christmas tree (dry), 7.0 kg	650	Ahonen et al. (1984)
Waste container (0.63 kg polyethylene) with empty milk cartons (0.41 kg)	13	Ahonen et al. (1984)


DINÁMICA DE INCENDIOS Incendios t²

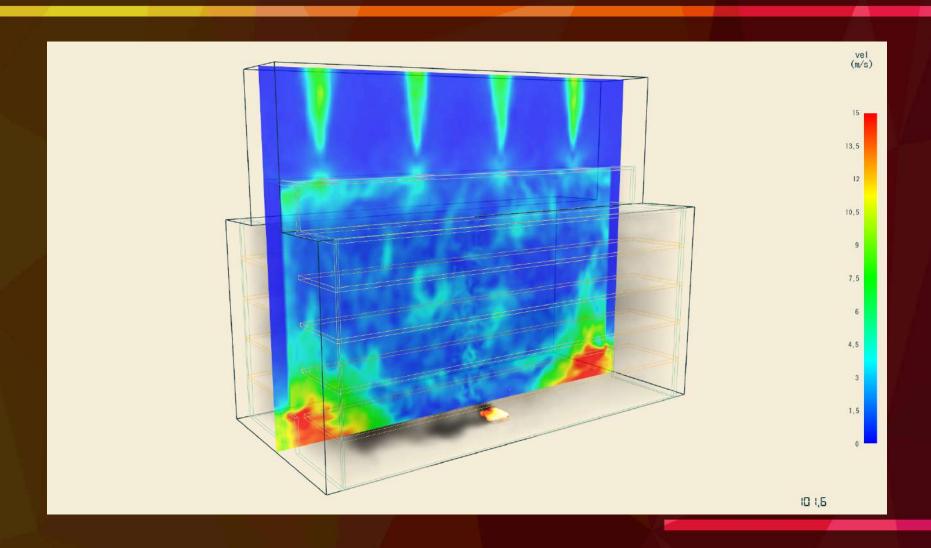
El crecimiento del incendio puede caracterizarse por una curva parabólica:

$$Q=(t/k)^2$$

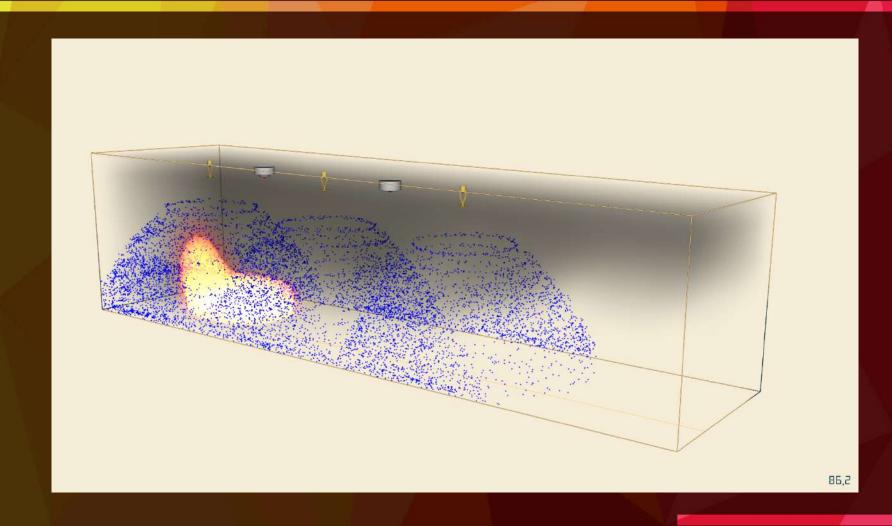
Fire growth rate	Growth constant, $k (s/\sqrt{MW})$	Typical real fire
Slow	600	Densely packed wood products
Medium	300	Solid wooden furniture such as desks Individual furniture items with small amount of plastic
Fast	150	Some upholstered furniture High stacked wood pallets Cartons on pallets
Ultrafast	75	Most upholstered furniture High stacked plastic materials Thin wood furniture such as wardrobes

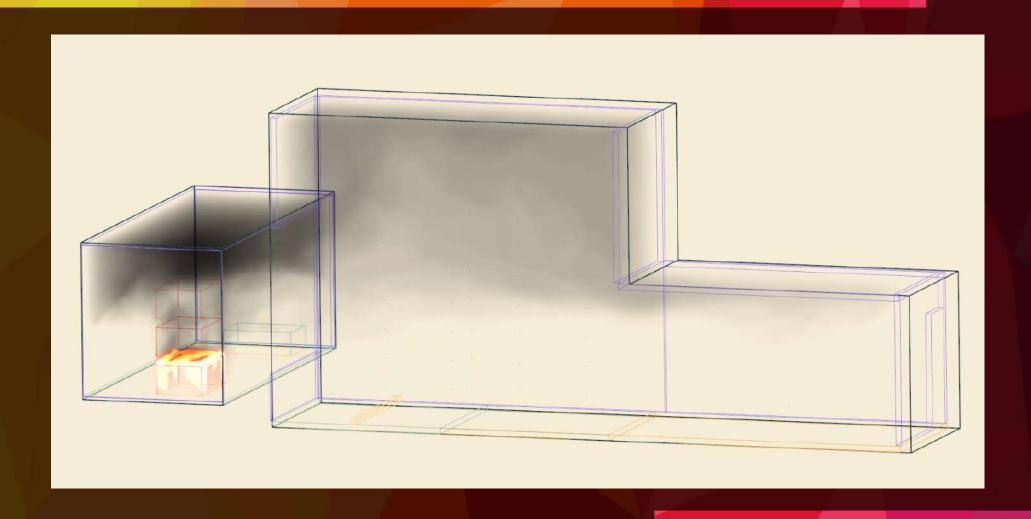
TABLA DE CONTENIDOS

- 1. INTRODUCCIÓN
- 2. DISEÑO BASADO EN DESEMPEÑO
- 3. CONCEPTOS DE EVACUACIÓN
- 4. SIMULACIÓN DE EVACUACIÓN
- 5. DINÁMICA DE INCENDIOS
- 6. SIMULACIÓN DE INCENDIOS
- 7. ANÁLISIS RSET vs. ASET
- 8. CASOS APLICADOS


SIMULACIÓN DE INCENDIOS Modelos de Campo

- Principal Código Utilizado: Fire Dynamics Simulator (FDS).
- ✓ Modelo matemático que integra las ecuaciones que gobiernan la dinámica de fluidos, transferencia de calor y combustión.
- ✓ Mediante CFD \longrightarrow RANS Model & $k \varepsilon$ modelo de turbulencia.
- ✓ Utiliza LES "Large Eddy Simulation", bajo número de Mach.
- ✓ Primera versión febrero año 2000.
- ✓ Última versión (FDS 6) junio 2018.
- ✓ Open Source.
- ✓ Desarrollado por el NIST USA & VTT Technical Research Centre Finland.
- ✓ INTERFAZ GRÁFICA UTILIZADA POR IPF: **Software PyroSim**

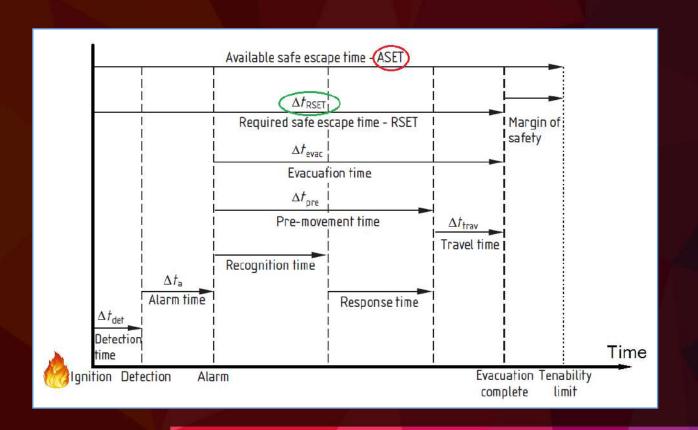

SIMULACIÓN DE INCENDIOS Outputs


SIMULACIÓN DE INCENDIOS Outputs

SIMULACIÓN DE INCENDIOS Outputs

SIMULACIÓN DE INCENDIOS Tiempo disponible para evacuar

✓ A partir de la simulación computacional de incendios se obtiene:


ASET = Available Safe Egress Time

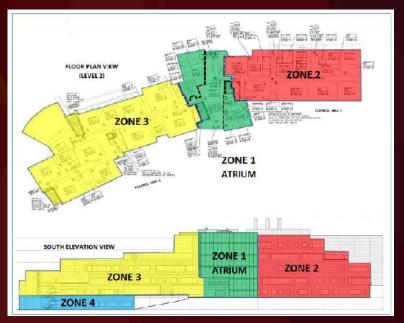
DEBE VERIFICARSE:

Que en cada uno de los escenarios de incendio seleccionados se cumpla:

RSET < ASET

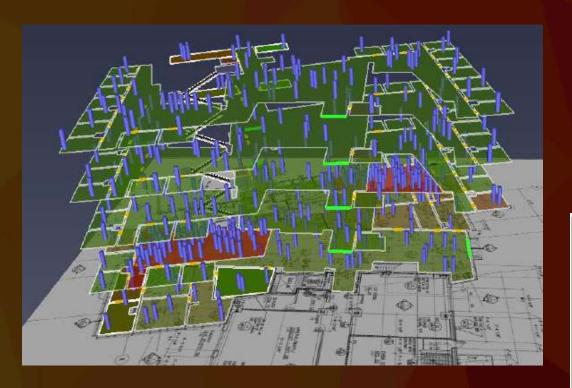
TABLA DE CONTENIDOS

- 1. INTRODUCCIÓN
- 2. DISEÑO BASADO EN DESEMPEÑO
- 3. CONCEPTOS DE EVACUACIÓN
- 4. HERRAMIENTAS DE SIMULACIÓN DE EVACUACIÓN
- 5. DINÁMICA DE INCENDIOS
- 6. HERRAMIENTAS DE SIMULACIÓN DE INCENDIOS
- 7. CASO APLICADO: ANÁLISIS RSET vs. ASET


CASO APLICADO: Center for Science and Mathematics (CSM) California Polytechnic State University

EDIFICIO EDUCACIONAL: 6 pisos, 17.500 m² construidos, atrio central.

Estudio previo de ARUP y Orelvis González.



CASO APLICADO: Center for Science and Mathematics (CSM) Evacuación

Simulación Atrio en Pathfinder:

Table 30- Travel time for atrium Levels 2 to 6				
Level	Occupant Load	t _e	t _e	t _e
		SFPE Handbook	STEPS	Pathfinder
2	77	26	21	24
3	155	34	37	104
3*	21*	-	-	27
4	64	39	34	69
5	67	39	40	51
6	68	39	39	49

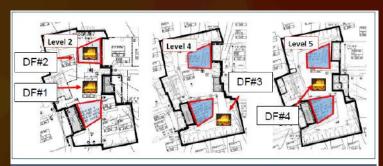

^{*} Level 3 in this case excludes the student work spaces from evacuating because a 1- hour fire rated wall separates the atrium space from all other areas on this Level

Table 31- RSET calculations (Seconds)						
Atrium	Detection and Notification Time	Pre-mov time		Travel Time	RSET	1.5xRSET ²⁸
Level	$(t_d + t_n)$	W1	<u>W2</u>	(t _e)	$= t_d + t_n + t_{p-e} + t_e$	(CBC Section 909.4)
2	60	60	<u>180</u>	24	144- <u>264</u>	216- <u>396</u>
3	60	60	<u>180</u>	104	224- <u>344</u>	336- <u>516</u>
3*	60	60	<u>180</u>	27	147- <u>267</u>	221- <u>401</u>
4	60	60	<u>180</u>	69	189- <u>309</u>	284- <u>464</u>
5	60	60	<u>180</u>	51	171- <u>291</u>	257- <u>437</u>
6	60	60	<u>180</u>	49	169- <u>289</u>	254- <u>434</u>
Note: RSET calculations were performed considering pre-movement times of 60 and 180 seconds (W1 and W2).						

CASO APLICADO: Center for Science and Mathematics (CSM) Incendio

4 escenarios de incendio:

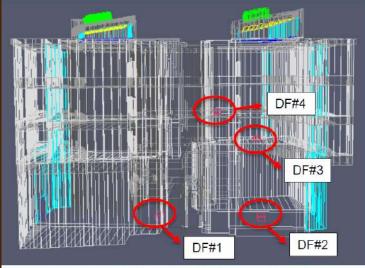


Figure 32 – Locations of design fires in the atrium

Smoke Management Study, 2009

Criterios de sobrevivencia:

- 60 °C temp. Máx.
- 13 m de visibilidad
- Flujo de calor radiante 2,0 kW/m².
- [CO] 1.000 ppm por 30 minutos.

Table 33- Tenability criteria				
Tenability Limit	Ref.			
140 °F (60°C)	NFPA 130, Standard for Fixed			
	Guideway and Passenger Rail			
	Systems			
	Jin, SFPE Handbook, Table 2-4.2.			
42 feet (13 meters)	Assume building occupants are			
	unfamiliar with surroundings			
4.7.144/2	SFPE Engineering Guide,			
•	Predicting 1 st and 2nd Degree Skin			
[550 1 (160 0)]	Burns from Thermal Radiation			
30,000 ppm/min	NFPA 101, Life Safety Code			
(1,000 ppm for 30 minutes)				
	Tenability Limit 140 °F (60°C) 42 feet (13 meters) 1.7 kW/m² [350 °F (180°C)] 30,000 ppm/min			

CASO APLICADO: Center for Science and Mathematics (CSM) Resultados

Table 36- RSET vs ASET according to Smoke Management Study				
Level	RSET (Seconds)	ASET (Seconds)	Results: Tenability Criteria	
2	212	1200	OK	
3	236	240	OK	
4	231	400	OK	
5	240	320	OK	
6	239	180(240)	FAIL (OK)	

Ref. Ref. Smoke Management Study, 2009

<u>Note</u>: The RSET calculations were performed with the software STEPS and assuming a pre-movement time of 60 seconds (W1). See also the note in Table 35, regarding the results for Level 6.

Table 37- RSET vs ASET according Pathfinder results				
Level	RSET (Seconds)	ASET (Seconds)	Results: Tenability Criteria	
2	216- <u>396</u>	1200	OK-OK	
3	336- <u>516</u>	240	FAIL - <u>FAIL</u>	
3*	221- <u>401</u>	240	OK - <u>FAIL</u>	
4	284- <u>464</u>	400	OK - <u>FAIL</u>	
5	257- <u>437</u>	320	OK - <u>FAIL</u>	
6	254- <u>434</u>	180(240)	FAIL - <u>FAIL</u>	

Ref. Ref. Smoke Management Study, 2009

<u>Note</u>: The RSET calculations were performed with the software PATHFINDER considering pre-movement times of 60 and <u>180</u> seconds (W1 and <u>W2</u>). See also the note in Table 35, regarding the results for Level 6.

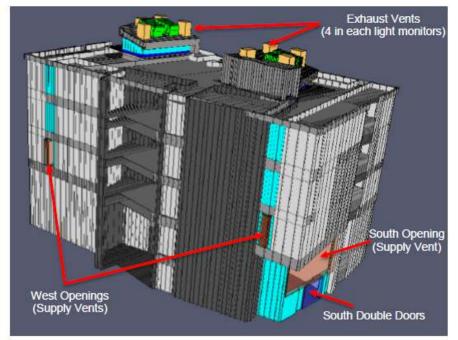


Figure 42 – FDS model for the atrium with the Smoke Control System

Ref. ARUP, 2009; ZGF, 2009)

^{*} Level 3 in this case excludes the student work spaces from evacuating because a 1- hour fire rated wall separates the atrium space from all other areas on this Level.

GRACIAS POR SU ATENCIÓN

s.lagos@dictuc.cl

